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1. ABSTRACT 
Lab activity is fin&mental for the real ~deMd.ing of 
several computer science topics such as operating systems. 
We have built our own hardware emulator after using 
SOfhWre tools from other Universities for several years. 
MPS is a general-purpose computer system simulator based 
on MIPS R3000 processor. Together with the main 
processor, RAM, ROM, disks, tapes, printer and terminal 
interfaces are carefully emulated and fully configurable; 
non-volatile memory units may be retained between 
simulations. 
MPS features a full-fledged graphic user interface running 
under X Window, complete sources and documentation. 
Along with it we present TINA, an experimental project on 
operating system development, together with several other 
project proposals. 
1.1 Keywords 
Simulation, lab activity, operating systems, computer 
architecture, MIPS. 

2. INTRODUCTION 
The teaching of computer science courses at the 
undergraduate level often requires the development of 
suitable lab activities. This is especially true for courses on 
computer architecture and operating systems, where the 
complex interactions between the software and the 
underlying hardware may be understood iu a better way by 
putting theory into practice. 
Unfortunately, the sheer speed and complexity of modem 
computer systems make them really hard to understand by 
the average student. Thus, a number of computer 

permission to make digital or hard copies of all Or pan of this work for 
personal Or classroom use is granted without fee provided that 
copies are not made or distributed for profit or CO~ma~Cia~ advan- 
tage and that copies bear this notze and the full Citation On the first Page. 
To copy otherwise, to republish, to post 0” SeWefS Or to 
redrstribfla to lists, requires prior specific PermIsSiOn andlor’a fee. 
SIGCSE ‘99 3/99 New Orleans, LA, USA 
0 ,999 ACM l-58113-085s6/99/0003...s5.00 

Renro Davoli 
University of Bologna, Dept. of Computer 

Science 
Mura Anteo Zamboni 7 

40127 Bologna (BO) - ITALY 
+39051354501 

renzo@cs.unibo.it 

simulators, together with suitable project proposals, have 
been developed for lab practice: they allow the main 
features of a eomputer system to be shown without 
meddling with the most intricate details, and let the students 
have a better control and understanding of the events which 
happen inside it. 

This paper is organized as follows: chapter 3 summarizes 
the teaching methods used in our operating systems courses, 
chapter 4 is a comparison with similar works found in 
literature, chapter 5 and 6 present the MPS emulated 
architecture and user interface, and chapter 7 is a overview 
of the TINA project specifications. Some final remarks 
about other projects, future extensions to MPS, 
acknowledgments and bibliography conclude the paper. 

3. PRACTICUM IN OPERATING SYSTEMS 
The course named ‘Practicum in Operating Systems” 
(CS415) has been part of the Computer Science 
undergraduate curricula at the Cornell University for 
more than ten years. Computer Science in Bologna decided 
to create a two-semester course (about 80 hours of 
classroom work, plus lab activity) named “Laboratorio di 
Informatica II” (CS Lab2) as an operating system lab course 
when the undergraduate curricuhun was modified in 1994. 

One of us (Davoli) has been the responsible of the course 
since its creation, and he has previous experience in 
organizing lab activity for standard operating system 
courses. The other (Morsiani) developed the MI’S simulator 
code as his graduation project under Davoli’s supervision. 
Here are some relevant issues about the orgauization of a 
course on practicum in operating systems. 

Supervised or unsupervised lab activity. Each part of the 
project may be implemented at the same time by each 
student (or group) under the direct supervision of the 
teacher or it can be realized as an assignment, with a submit 
date. We preferred the latter, as it is allows to each student 
to work at his/her speed, using his/her design skill and 
implementation technique. The use of widespread operating 
environments, such as Linux, allows students to use their 
own PC to work on the project even outside the University 
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lab facilities. This way, part-time students may take part to 
the course, as well as students that need more time to 
complete the assignment. 

Personal or group activity. The lab work could be carried 
out by each single student by him/herself, or students could 
be divided into working groups. We took the latter choice, 
for several reasons: the assignment may be more complex, 
interesting and complete; the students learn from practice 
how to deal with large projects, how to share the work load, 
test incomplete programs and join partial implementation 
into a complete result. 

A single exercise for the whole course vs. different 
exercises, one for each student/group, which may sum 
up intO a large project. The latter would make each 
student work only on some details of the whole; so we have 
chosen the former. This choice also simplities the teacher’s 
work as all students deal with the same problems at the 
same time. Some form of cooperation between different 
groups is also possible and we think it can be useful. The 
point is that some competition have to be held between 
groups, and brute plagiarism should be avoided by carefully 
analyzing the submitted works during the evaluation. We 
used a local newsgroup as an asynchronous communication 
channel for consulting both for the teacher and for the 
colleagues. 

Single term submission or mid-term partial goals. The 
latter is certainly better. Students may fix structural defects 
of their work without compromising their final evaluation. 
The teacher also gets a better view about common 
problems. We tried one to three mid-term submissions in 
different years. Actually we use a single mid-term, to avoid 
interferences with other courses and because the students 
need to learn both how to use the emulator and its tools, and 
how to design concurrent O.S. code. The mid-term allows 
the students to split this in two phases: the first one is 
typically an implementation of data structures to be used in 
the second phase, which is the main exercise. When the 
students start solving the second phase they already got 
acquainted with the emulator and its tools. 

4. RELATED WORKS 
CHIP [l], a PDPIl 1 simulator developed at the Cornell 
University, together with its accompanying HOCA project 
[2], has been employed for many years in the past at the 
University of Bologna. CHIP provided the students with a 
realistic (but outdated by now) architecture, with tape and 
disk units, terminals and printers. The main lack of the 
CHIP enviromn ent was its usability. Its interface was a full- 
screen text one until 1996. Users interacted through a quite 
cryptic command language. The cross-compiler was 
realized from the UNIX V7 C compiler [9], and thus the 
syntax used was neither object oriented nor even ANSI. 
Other examples of hardware emulators used for educational 
purposes include SPIM [7] and Nachos [4]. Both these 
emulators refer to the architecture of MIPS processors. 

SPIM has been developed as a tool for the study of 
microprocessor architectures. It emulates a system having 
only RAM, ROM and a single terminal. All the support for 
virtual memory, as well as pipelining and delay slots, has 
not been implemented. These characteristics make SPIM 
unsuitable as a tool to teach operating systems. 

Nachos, on the other hand, has been expressly created for 
teaching operating systems. It implements the virtual 
memory support for MIPS and features a terminal, a disk 
and a network interface. The main lack of Nachos is in its 
software architecture: it is not a self-contained emulator, but 
a set of C++ objects containing both the MIPS emulator and 
an experimental operating system. From a teaching point of 
view it does not give a clean perception of the 
software/hardware interface. The kernel is linked together 
with the emulator and thus it is loaded as a software module 
for the hosting machine (i.e. on non-MIPS machines, the 
kernel executable will not be MIPS machine code). 

We examined these projects carefully; in fact, some of the 
MPS simulator features were directly inspired by them. Our 
main goal, in developing MPS, were to obtain a clean, up- 
to-date, and easy-to-understand computer architecture. 
It should be controlled by an intuitive interface, which 
should feature powerful debugging tools, and be flexible 
enough to make the simulator easy to use and suitable for a 
broad range of experimental projects. 

5. THE MPS ARCHITECTURE 
The MPS computer system architecture is a classical one: 
one microprocessor, RAM, ROM and memory-mapped 
device controllers straightly connected by one system bus. 
Many of the simulator characteristics were defined along 
with the architectural design process, so they are reported 
here. 

5.1 MPS Microprocessor 
The MPS main processor is an almost-perfect emulation of 
the MIPS R3000 RISC integer microprocessor unit. It has 
been chosen for several reasons: 

l the lX33OO features many of the most interesting 
characteristics of modem processors: large address 
space and word size (32-bit), reduced instruction set, 
load/store pipelined architecture, load and branch 
delay slots, kernel/user modes, interrupt and trap 
handling, etc., and still it is not too complex for 
students to understand; 

. ease of simulation, due to its RISC nature; 

. availability of some detailed computer literature, 
both technical [6] and for teaching purposes [S], and 
of a cross-compiler kit, based on the popular gee 
compiler; 

l other similar projects (m, 141) have made a 
successful use of it. 

By simulating the R3000 to the slightest detail (thanks to 
the detailed documentation) we may use the cross-compiler 
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kit Straight Out Of the box; the availability of a specific
textbook is also a great help in organizing teaching courses.

5.2 RAM and ROM
The amount of installed RAM in the simulated system may
be changed, up to 2 MB or more if necessary.

Bootstrap and BIOS ROMs may be easily written to suit
specific needs using the assembler provided with the cross-
compiler kit, and then loaded inside the simulator. BIOS
may contain support routines for normal operation, thread-
safe code for Critical sections useful in multi-processing
kernel development, etc.

Three bootstrap methods are available, using or developing
suitable bootstrap ROMs: “core boot”, tape, and disk boot.
This allows the simulation to faithfully mimic the bootstrap
of a real machine (reading the start-up code from disk or
tape, under the control of bootstrap ROM code), or
allowing a quicker boot (the “core boot”, which implies that
the start-up code is already present in memory).

5.3 I/O System
The R3000 processor specifications do not detail I/O
structure; they just make available up to six external
interrupt lines, with appropriate interrupt handling
mechanisms.

We reserved the highest priority interrupt line to the system
timer, and assigned other lines to other devices (from
highest priority to lowest one): disk drives, tape drives,
network interfaces (still under development), printer
interfaces and terminal interfaces.

Each device is controlled by a specific device register; up to
32 devices are available for each interrupt line. All the
device registers are arrayed in a memory area, together with
other system configuration information (RAM address
range, system clock and timer registers, etc.)

We decided to build &vice registers with a standardized
structure and operation codes (one word-sized field each for
status and command, and two more word-sized fields for
parameters). An interrupt-driven full-handshake sequence is
required to perform a successful I/O operation. Each device
may show transient hardware failures, upon user selection,
to test software fault-tolerance.

Each simulated device performance (that is, the time
required for an I/O operation, viewed from inside the
simulation), is consistent with the real performance of
actual devices, and may be easily modified to suit specific
needs.

The processor clock itself may be set in a wide range
(currently, 1 to 100 MHz): this forces the simulator to scale
the I/O operation times accordingly, and thus allows to
experiment with different trade-offs between processor and
I/O performance with a simple and consistent operation,
without worrying about changing all the device
performance figures, or moving them out of realistic ranges.

5.3.1 Disk Devices
Simulation of disk devices is the most accurate, since many
disk management algorithms may be good candidates for
practice. Thus, disk geometry and performance are fully
configurable: it is possible to specify the number of
cylinders, heads, sectors, the rotational speed, the inter-
sector gap and track-to-track seek time; all these figures are
used to compute the time required by the I/O operation.

The simulator saves on a separate file the actual contents
for each simulated disk, so they may be kept between
sessions.

Each disk sector contains 512 bytes, and may be addressed
by a <cylinder, head, sector> triple; typical operations are
cylinder seek, and sector read and write with emulated
DMA transfer. Any file system implementation is possible.

5.3.2 Tape Devices
Simulation of tape devices has been included to allow the
user to load external files (program objects and data) inside
the simulator. These files are assembled together in a file,
which represents a tape cartridge; this tape may be “loaded”
and “unloaded” by the user into the tape drive, and read
from inside the simulation.

Tapes may be kept between sessions; each tape may be
read, one 512-byte block at a time, by the tape drive, with
DMA transfer; the entire tape may be fully rewound or
scanned, looking for block and file markers.

5.3.3 Printer Devices
Printer interfaces are emulated as simple character devices:
the simulator dumps their output in external files (one for
each active printer).

5.3.4 Terminal Devices
Terminal interfaces too are emulated as simple
receiver/transmitter character devices: their output is put
both in external files (like printers), and shown inside a
simulator window, while their input may be set interactively
by the user, one line at a time, during the simulation.
This allows simulating the
user-machine interaction of
a real computer system
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re provided to
 advance  the simulation for
a predefined number of
instluctions, and/or to
make it run at various
s p e e d s  t o reach a
particular point quickly or
I slowly step through the
code.

Processor status, registers,
system clock and- timer
may be changed just

the appropriate
buttons allow

the user to globally activate
or deactivate the monitoring

of program traps, suspects (variables under examination)
and breakpoints in the code; if active, the simulation stops
upon reaching such a point. Code position is shown both
with address and function name plus offset, when available.
The symbol table may be loaded into the simulator together
with the program itself, symbols may be used to define
breakpoints and suspect variables, using the memory
browser window (Figure 2).

Other windows (like the one in Figure 4) allow monitoring
the device status, and simulating hardware failures; finally,
a setup window (Figure 3) controls device installation and
the configuration of system parameters and ROM files.

6.2 Software Development Kit
Companion of the graphical interface, is the software
development kit for writing C and assembly programs for
the simulator.

It includes the already-mentioned WC cross-compiler kit,
together with some utilities
they allow the conversion
of the ELF format object
code produced by the cross-
compiler to an a.out form
suitable for bootstrapping
the simulation; examination
of this object code;
assembly program objects
and/or other files into tapes
to be loaded inside the
simulation.

Standard bootstrap ROMs
for disk, tape and core boot
were developed, along with
a BIOS ROM with basic
capabilities and a support
library.

written specifically for MPS:

A user manual, describing MPS architecture and features,
completes the development kit.

6.3 Development Notes
The entire MPS simulator
using C++ language in a

software has been developed
Linux environment on Intel

platforms. A preliminary project hypothesis considered
Java use, but it was discarded, mainly for performance
reasons. Special care has been taken to ensure that the
simulator could run at fast speeds, to shorten the debug
cycle of applications written for it.

The entire project has been ported without effort under
Solaris on SUN SPARC platforms; this mainly because the
entire project was developed keeping well in mind the
little/big end&mess issue. The MIPS processor, in fact,
may operate as a big-endian processor or a little-endian
one; the cross-compiler kit reflects this, offering a version
for both. But Intel processors are little endian,  and SPARC
ones am big-end&n;  so, the code was carefully written to
adopt the endianness of the underlying processor.

This way, the well-known endianness conversion issue ([4],
[lo]) was avoided altogether, and it ensures the portability
of this project to any environment. The price for this is just
the use of the correct cross-compiler kit version
compiling.

Figure 4

7. THE TINA PROJECT
Companion to the MPS simulator is the TINA project on
experimental kernel development It has been used as lab
project assignment for students of CS Lab2 course on
operating systems at University of Bologna in 1998.

TINA project specifications were taken from those for
HOCA operating system, the companion to CHIP, just
adapting it to the new simulator and shortening it to two
phases from the original three.

The first phase involves writing two modules that ate later
used in the nucleus to implement the process queue and the
semaphore abstractions. The first module is a process
queues management module, while the second is an active
semaphore list module; both require management of linked
lists and pointers, but no knowledge about concurrent
programming. The students test their ability to code in C
language (which is introduced during the course) and get
accustomed with the simulator.

The second phase involves building the routines that
implement the notion of asynchronous sequential threads
and processes, a pseudo-clock and the synchronization
primitives.
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TINA has a monolithic kernel, where system calls execute 
as reentrant privileged code in the time slices of the 
requesting processes. Very few system calls ought to be 
implemented process creation aud termination, P and V on 
general semaphores, I/O wait, pseudo-clock tick wait, and 
pass-up of traps to handlers defined by each process; this 
allows the creation of further layers of system management, 
as in THE system [5]. 

Both phases were provided with alpha test modules to allow 
code testing before submission; support libraries, BIOS and 
documentation were handed down to students. The results 
we obtained were highly encouraging: the starting group 
number was 51, 35 submitted the fUgt phase, and 32 the 
second one. 8 completed kernels were working perfectly, 
and another 8 had only minor inconsistencies. Over 300 
messages were exchanged in the newsgroup. 

8. CONCLUSIONS AND JXITURE 
DEVELOPMENTS 
MPS will be used as the main development tool of our 
course for the next years. Here is a set of possible exercises: 

Support layer for TINA. This can be a third phase of the 
TINA project or a self-contained exercise, maybe combined 
with some modifications of the kernel to force the students 
to investigate its structure. A support level may provide the 
system with some device drivers, virtual memory aud 
protection from user processes misbehavior. 

Microkernel O.S. TINA specifications may be modified 
with a microkemel design [3]. Instead of having several 
system calls, only two are defmed (send and receive): the 
kernel itself may be designed to translate each hardware 
signal (interrupt or trap) into a message to a specific 
management thread. 

Shell, file system and specialized drivers (may bc seen as 
a fourth phase in TINA development). The file system 
could be FAT-based with primitives to create and delete 
fdes, and read/write their fixed-size blocks sequentially. 
Seek minimization algorithms, like the elevator algorithm, 
could be added to the basic disk driver. Spooling facilities 
could also be implemented to build either a print spooler or 
a spool for batch executions. This latter exercise may also 
include modilications to kernel scheduler to support priority 
management. 
We feel that MPS will allow each one of them, and much 
more; its features make it suitable for many lab projects, 
from computer architecture and assembly lauguage 
programming, to operating systems development, resource 
management schemes, and real-time algorithms testing. 

The development of a network interface card device, which 
will allow building entire networks of MPS machines, is at 
an advanced stage, and a multi-processor version of MPS is 
going to be released, too. New and more specialized 
projects about operating systems will then be possible; we 
speculate that these new features will broad the range of 

Finally, our greatest thanks go to the over 200 students 
which served as testers for our simulator, fmdiug the bugs, 
and giving good suggestions. 
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