
Learni’ng Operating Systems Structure and Implementation
through the MPS Computer System Simulator
Mauro Morsiani

National Institute for Nuclear Physics,
Ferrara Section
Via Paradiso, 12

44100 Ferrara (FE) - ITALY
+390532291900

morsiani@fe.infn.it

1. ABSTRACT
Lab activity is fin&mental for the real ~deMd.ing of
several computer science topics such as operating systems.
We have built our own hardware emulator after using
SOfhWre tools from other Universities for several years.
MPS is a general-purpose computer system simulator based
on MIPS R3000 processor. Together with the main
processor, RAM, ROM, disks, tapes, printer and terminal
interfaces are carefully emulated and fully configurable;
non-volatile memory units may be retained between
simulations.
MPS features a full-fledged graphic user interface running
under X Window, complete sources and documentation.
Along with it we present TINA, an experimental project on
operating system development, together with several other
project proposals.
1.1 Keywords
Simulation, lab activity, operating systems, computer
architecture, MIPS.

2. INTRODUCTION
The teaching of computer science courses at the
undergraduate level often requires the development of
suitable lab activities. This is especially true for courses on
computer architecture and operating systems, where the
complex interactions between the software and the
underlying hardware may be understood iu a better way by
putting theory into practice.
Unfortunately, the sheer speed and complexity of modem
computer systems make them really hard to understand by
the average student. Thus, a number of computer

permission to make digital or hard copies of all Or pan of this work for
personal Or classroom use is granted without fee provided that
copies are not made or distributed for profit or CO~ma~Cia~ advan-
tage and that copies bear this notze and the full Citation On the first Page.
To copy otherwise, to republish, to post 0” SeWefS Or to
redrstribfla to lists, requires prior specific PermIsSiOn andlor’a fee.
SIGCSE ‘99 3/99 New Orleans, LA, USA
0 ,999 ACM l-58113-085s6/99/0003...s5.00

Renro Davoli
University of Bologna, Dept. of Computer

Science
Mura Anteo Zamboni 7

40127 Bologna (BO) - ITALY
+39051354501

renzo@cs.unibo.it

simulators, together with suitable project proposals, have
been developed for lab practice: they allow the main
features of a eomputer system to be shown without
meddling with the most intricate details, and let the students
have a better control and understanding of the events which
happen inside it.

This paper is organized as follows: chapter 3 summarizes
the teaching methods used in our operating systems courses,
chapter 4 is a comparison with similar works found in
literature, chapter 5 and 6 present the MPS emulated
architecture and user interface, and chapter 7 is a overview
of the TINA project specifications. Some final remarks
about other projects, future extensions to MPS,
acknowledgments and bibliography conclude the paper.

3. PRACTICUM IN OPERATING SYSTEMS
The course named ‘Practicum in Operating Systems”
(CS415) has been part of the Computer Science
undergraduate curricula at the Cornell University for
more than ten years. Computer Science in Bologna decided
to create a two-semester course (about 80 hours of
classroom work, plus lab activity) named “Laboratorio di
Informatica II” (CS Lab2) as an operating system lab course
when the undergraduate curricuhun was modified in 1994.

One of us (Davoli) has been the responsible of the course
since its creation, and he has previous experience in
organizing lab activity for standard operating system
courses. The other (Morsiani) developed the MI’S simulator
code as his graduation project under Davoli’s supervision.
Here are some relevant issues about the orgauization of a
course on practicum in operating systems.

Supervised or unsupervised lab activity. Each part of the
project may be implemented at the same time by each
student (or group) under the direct supervision of the
teacher or it can be realized as an assignment, with a submit
date. We preferred the latter, as it is allows to each student
to work at his/her speed, using his/her design skill and
implementation technique. The use of widespread operating
environments, such as Linux, allows students to use their
own PC to work on the project even outside the University

63

lab facilities. This way, part-time students may take part to
the course, as well as students that need more time to
complete the assignment.

Personal or group activity. The lab work could be carried
out by each single student by him/herself, or students could
be divided into working groups. We took the latter choice,
for several reasons: the assignment may be more complex,
interesting and complete; the students learn from practice
how to deal with large projects, how to share the work load,
test incomplete programs and join partial implementation
into a complete result.

A single exercise for the whole course vs. different
exercises, one for each student/group, which may sum
up intO a large project. The latter would make each
student work only on some details of the whole; so we have
chosen the former. This choice also simplities the teacher’s
work as all students deal with the same problems at the
same time. Some form of cooperation between different
groups is also possible and we think it can be useful. The
point is that some competition have to be held between
groups, and brute plagiarism should be avoided by carefully
analyzing the submitted works during the evaluation. We
used a local newsgroup as an asynchronous communication
channel for consulting both for the teacher and for the
colleagues.

Single term submission or mid-term partial goals. The
latter is certainly better. Students may fix structural defects
of their work without compromising their final evaluation.
The teacher also gets a better view about common
problems. We tried one to three mid-term submissions in
different years. Actually we use a single mid-term, to avoid
interferences with other courses and because the students
need to learn both how to use the emulator and its tools, and
how to design concurrent O.S. code. The mid-term allows
the students to split this in two phases: the first one is
typically an implementation of data structures to be used in
the second phase, which is the main exercise. When the
students start solving the second phase they already got
acquainted with the emulator and its tools.

4. RELATED WORKS
CHIP [l], a PDPIl 1 simulator developed at the Cornell
University, together with its accompanying HOCA project
[2], has been employed for many years in the past at the
University of Bologna. CHIP provided the students with a
realistic (but outdated by now) architecture, with tape and
disk units, terminals and printers. The main lack of the
CHIP enviromn ent was its usability. Its interface was a full-
screen text one until 1996. Users interacted through a quite
cryptic command language. The cross-compiler was
realized from the UNIX V7 C compiler [9], and thus the
syntax used was neither object oriented nor even ANSI.
Other examples of hardware emulators used for educational
purposes include SPIM [7] and Nachos [4]. Both these
emulators refer to the architecture of MIPS processors.

SPIM has been developed as a tool for the study of
microprocessor architectures. It emulates a system having
only RAM, ROM and a single terminal. All the support for
virtual memory, as well as pipelining and delay slots, has
not been implemented. These characteristics make SPIM
unsuitable as a tool to teach operating systems.

Nachos, on the other hand, has been expressly created for
teaching operating systems. It implements the virtual
memory support for MIPS and features a terminal, a disk
and a network interface. The main lack of Nachos is in its
software architecture: it is not a self-contained emulator, but
a set of C++ objects containing both the MIPS emulator and
an experimental operating system. From a teaching point of
view it does not give a clean perception of the
software/hardware interface. The kernel is linked together
with the emulator and thus it is loaded as a software module
for the hosting machine (i.e. on non-MIPS machines, the
kernel executable will not be MIPS machine code).

We examined these projects carefully; in fact, some of the
MPS simulator features were directly inspired by them. Our
main goal, in developing MPS, were to obtain a clean, up-
to-date, and easy-to-understand computer architecture.
It should be controlled by an intuitive interface, which
should feature powerful debugging tools, and be flexible
enough to make the simulator easy to use and suitable for a
broad range of experimental projects.

5. THE MPS ARCHITECTURE
The MPS computer system architecture is a classical one:
one microprocessor, RAM, ROM and memory-mapped
device controllers straightly connected by one system bus.
Many of the simulator characteristics were defined along
with the architectural design process, so they are reported
here.

5.1 MPS Microprocessor
The MPS main processor is an almost-perfect emulation of
the MIPS R3000 RISC integer microprocessor unit. It has
been chosen for several reasons:

l the lX33OO features many of the most interesting
characteristics of modem processors: large address
space and word size (32-bit), reduced instruction set,
load/store pipelined architecture, load and branch
delay slots, kernel/user modes, interrupt and trap
handling, etc., and still it is not too complex for
students to understand;

. ease of simulation, due to its RISC nature;

. availability of some detailed computer literature,
both technical [6] and for teaching purposes [S], and
of a cross-compiler kit, based on the popular gee
compiler;

l other similar projects (m, 141) have made a
successful use of it.

By simulating the R3000 to the slightest detail (thanks to
the detailed documentation) we may use the cross-compiler

64

kit Straight Out Of the box; the availability of a specific
textbook is also a great help in organizing teaching courses.

5.2 RAM and ROM
The amount of installed RAM in the simulated system may
be changed, up to 2 MB or more if necessary.

Bootstrap and BIOS ROMs may be easily written to suit
specific needs using the assembler provided with the cross-
compiler kit, and then loaded inside the simulator. BIOS
may contain support routines for normal operation, thread-
safe code for Critical sections useful in multi-processing
kernel development, etc.

Three bootstrap methods are available, using or developing
suitable bootstrap ROMs: “core boot”, tape, and disk boot.
This allows the simulation to faithfully mimic the bootstrap
of a real machine (reading the start-up code from disk or
tape, under the control of bootstrap ROM code), or
allowing a quicker boot (the “core boot”, which implies that
the start-up code is already present in memory).

5.3 I/O System
The R3000 processor specifications do not detail I/O
structure; they just make available up to six external
interrupt lines, with appropriate interrupt handling
mechanisms.

We reserved the highest priority interrupt line to the system
timer, and assigned other lines to other devices (from
highest priority to lowest one): disk drives, tape drives,
network interfaces (still under development), printer
interfaces and terminal interfaces.

Each device is controlled by a specific device register; up to
32 devices are available for each interrupt line. All the
device registers are arrayed in a memory area, together with
other system configuration information (RAM address
range, system clock and timer registers, etc.)

We decided to build &vice registers with a standardized
structure and operation codes (one word-sized field each for
status and command, and two more word-sized fields for
parameters). An interrupt-driven full-handshake sequence is
required to perform a successful I/O operation. Each device
may show transient hardware failures, upon user selection,
to test software fault-tolerance.

Each simulated device performance (that is, the time
required for an I/O operation, viewed from inside the
simulation), is consistent with the real performance of
actual devices, and may be easily modified to suit specific
needs.

The processor clock itself may be set in a wide range
(currently, 1 to 100 MHz): this forces the simulator to scale
the I/O operation times accordingly, and thus allows to
experiment with different trade-offs between processor and
I/O performance with a simple and consistent operation,
without worrying about changing all the device
performance figures, or moving them out of realistic ranges.

5.3.1 Disk Devices
Simulation of disk devices is the most accurate, since many
disk management algorithms may be good candidates for
practice. Thus, disk geometry and performance are fully
configurable: it is possible to specify the number of
cylinders, heads, sectors, the rotational speed, the inter-
sector gap and track-to-track seek time; all these figures are
used to compute the time required by the I/O operation.

The simulator saves on a separate file the actual contents
for each simulated disk, so they may be kept between
sessions.

Each disk sector contains 512 bytes, and may be addressed
by a <cylinder, head, sector> triple; typical operations are
cylinder seek, and sector read and write with emulated
DMA transfer. Any file system implementation is possible.

5.3.2 Tape Devices
Simulation of tape devices has been included to allow the
user to load external files (program objects and data) inside
the simulator. These files are assembled together in a file,
which represents a tape cartridge; this tape may be “loaded”
and “unloaded” by the user into the tape drive, and read
from inside the simulation.

Tapes may be kept between sessions; each tape may be
read, one 512-byte block at a time, by the tape drive, with
DMA transfer; the entire tape may be fully rewound or
scanned, looking for block and file markers.

5.3.3 Printer Devices
Printer interfaces are emulated as simple character devices:
the simulator dumps their output in external files (one for
each active printer).

5.3.4 Terminal Devices
Terminal interfaces too are emulated as simple
receiver/transmitter character devices: their output is put
both in external files (like printers), and shown inside a
simulator window, while their input may be set interactively
by the user, one line at a time, during the simulation.
This allows simulating the
user-machine interaction of
a real computer system

65

--.---------7

re provided to
 advance the simulation for
a predefined number of
instluctions, and/or to
make it run at various
s p e e d s t o reach a
particular point quickly or
I slowly step through the
code.

Processor status, registers,
system clock and- timer
may be changed just

the appropriate
buttons allow

the user to globally activate
or deactivate the monitoring

of program traps, suspects (variables under examination)
and breakpoints in the code; if active, the simulation stops
upon reaching such a point. Code position is shown both
with address and function name plus offset, when available.
The symbol table may be loaded into the simulator together
with the program itself, symbols may be used to define
breakpoints and suspect variables, using the memory
browser window (Figure 2).

Other windows (like the one in Figure 4) allow monitoring
the device status, and simulating hardware failures; finally,
a setup window (Figure 3) controls device installation and
the configuration of system parameters and ROM files.

6.2 Software Development Kit
Companion of the graphical interface, is the software
development kit for writing C and assembly programs for
the simulator.

It includes the already-mentioned WC cross-compiler kit,
together with some utilities
they allow the conversion
of the ELF format object
code produced by the cross-
compiler to an a.out form
suitable for bootstrapping
the simulation; examination
of this object code;
assembly program objects
and/or other files into tapes
to be loaded inside the
simulation.

Standard bootstrap ROMs
for disk, tape and core boot
were developed, along with
a BIOS ROM with basic
capabilities and a support
library.

written specifically for MPS:

A user manual, describing MPS architecture and features,
completes the development kit.

6.3 Development Notes
The entire MPS simulator
using C++ language in a

software has been developed
Linux environment on Intel

platforms. A preliminary project hypothesis considered
Java use, but it was discarded, mainly for performance
reasons. Special care has been taken to ensure that the
simulator could run at fast speeds, to shorten the debug
cycle of applications written for it.

The entire project has been ported without effort under
Solaris on SUN SPARC platforms; this mainly because the
entire project was developed keeping well in mind the
little/big end&mess issue. The MIPS processor, in fact,
may operate as a big-endian processor or a little-endian
one; the cross-compiler kit reflects this, offering a version
for both. But Intel processors are little endian, and SPARC
ones am big-end&n; so, the code was carefully written to
adopt the endianness of the underlying processor.

This way, the well-known endianness conversion issue ([4],
[lo]) was avoided altogether, and it ensures the portability
of this project to any environment. The price for this is just
the use of the correct cross-compiler kit version
compiling.

Figure 4

7. THE TINA PROJECT
Companion to the MPS simulator is the TINA project on
experimental kernel development It has been used as lab
project assignment for students of CS Lab2 course on
operating systems at University of Bologna in 1998.

TINA project specifications were taken from those for
HOCA operating system, the companion to CHIP, just
adapting it to the new simulator and shortening it to two
phases from the original three.

The first phase involves writing two modules that ate later
used in the nucleus to implement the process queue and the
semaphore abstractions. The first module is a process
queues management module, while the second is an active
semaphore list module; both require management of linked
lists and pointers, but no knowledge about concurrent
programming. The students test their ability to code in C
language (which is introduced during the course) and get
accustomed with the simulator.

The second phase involves building the routines that
implement the notion of asynchronous sequential threads
and processes, a pseudo-clock and the synchronization
primitives.

66

TINA has a monolithic kernel, where system calls execute
as reentrant privileged code in the time slices of the
requesting processes. Very few system calls ought to be
implemented process creation aud termination, P and V on
general semaphores, I/O wait, pseudo-clock tick wait, and
pass-up of traps to handlers defined by each process; this
allows the creation of further layers of system management,
as in THE system [5].

Both phases were provided with alpha test modules to allow
code testing before submission; support libraries, BIOS and
documentation were handed down to students. The results
we obtained were highly encouraging: the starting group
number was 51, 35 submitted the fUgt phase, and 32 the
second one. 8 completed kernels were working perfectly,
and another 8 had only minor inconsistencies. Over 300
messages were exchanged in the newsgroup.

8. CONCLUSIONS AND JXITURE
DEVELOPMENTS
MPS will be used as the main development tool of our
course for the next years. Here is a set of possible exercises:

Support layer for TINA. This can be a third phase of the
TINA project or a self-contained exercise, maybe combined
with some modifications of the kernel to force the students
to investigate its structure. A support level may provide the
system with some device drivers, virtual memory aud
protection from user processes misbehavior.

Microkernel O.S. TINA specifications may be modified
with a microkemel design [3]. Instead of having several
system calls, only two are defmed (send and receive): the
kernel itself may be designed to translate each hardware
signal (interrupt or trap) into a message to a specific
management thread.

Shell, file system and specialized drivers (may bc seen as
a fourth phase in TINA development). The file system
could be FAT-based with primitives to create and delete
fdes, and read/write their fixed-size blocks sequentially.
Seek minimization algorithms, like the elevator algorithm,
could be added to the basic disk driver. Spooling facilities
could also be implemented to build either a print spooler or
a spool for batch executions. This latter exercise may also
include modilications to kernel scheduler to support priority
management.
We feel that MPS will allow each one of them, and much
more; its features make it suitable for many lab projects,
from computer architecture and assembly lauguage
programming, to operating systems development, resource
management schemes, and real-time algorithms testing.

The development of a network interface card device, which
will allow building entire networks of MPS machines, is at
an advanced stage, and a multi-processor version of MPS is
going to be released, too. New and more specialized
projects about operating systems will then be possible; we
speculate that these new features will broad the range of

Finally, our greatest thanks go to the over 200 students
which served as testers for our simulator, fmdiug the bugs,
and giving good suggestions.

REFERENCES
Babaoglu, O., et al. Documentation for the CHIP
Computer System. Dept. of Computer Science, Cornell
University, Ithaca NY, 19%
http:llwww.cs.utexzs.edu/usersflorenzolcorsilcs372l97
Flproject.html

PI Babaoglu, O., Schneider, F.B. The HOCA Operating
System Specifications, Dept. of Computer Science,
Cornell University, Ithaca NY, 1988.
http://www.cs.utexas.edu/users/lorenzolcorsi/cs372/97
F/project.html

[31

141

151

Baron, R.V. et al. MACH Kernel Interface Manual,
Dept. of Computer Science, Carnegie Mellon
University, Pittsburgh PA, 1989.

Christopher, W.A., Procter, S.J., Anderson, T.E. The
Nachos Instructional Operating System. Computer.
Science Division, University of California, Berkeley
CA, 1992. http://http.cs.berkeky.edul4eahu.zchos
Dijkstra, E.W. The Structure of THE
Multiprogramming System, Commun. ACM 11,5 (pp.
341-346).

WI

VI

Fl

PI

Kane G., Heimich J. MIPS RISC Architecture.
Prentice-Hall, Englewood Cliffs NJ, 1992.

Lams, J.T. SPIM S20: A MIPS R2ooO Simulator.
Computer Sciences Dept. University of Wisconsin
Madison WI, 1990.
jIp:l/ftp.cs.wisc.edu/tech-reports/reports

Patterson, D.A., Hennessy, J.L. Computer Organization
& Design: The Hardware/Software Interface. Morgan
Kaufmann Publ., San Mate0 CA, 1994.
Ritchie, D.M. A Tour Through The UNIX C Compiler,
AT&T Bell Laboratories, Murray Hill NJ, 1979.

experimental projects to inter-machine communication,
parallel and distributed computing issues.

All software and documentation related to the MPS project
is freely available on the World Wide Web at URL:
http://www.cs.unibo.it/-morsiani. We will be glad to &are
our experience with other teachers and instructors that
would like to use MPS.

9. ACKNOWLEDGMENTS
Our thanks go to Ozalp Babaoglu, which brought here at
Bologna the original CHIP and HOCA projects from
Cornell; to James T. Lams for SPIM and to Nachos
development team for their projects, which gave so many
good ideas to us; to Michael Riepe for its freeware ELF
manipulation library, and to T.C. Zhao and Mark Overmars,
for their wonderful freeware X FORMS library.

[lo] Tanenbaum, A.S. Structured Computer Organization
(III ed.). Prentice-Hall, Englewood Cliffs NJ, 1990.

67

