
µMPS2 Cross Toolchain Guide

Tomislav Jonjic

September 27, 2011

Abstract

Development for µMPS2 is typically done in the C programming language,

using a toolchain running on a separate system (most often on the system that

hosts the µMPS2 virtual machine itself). Such a toolchain is often referred to

as a cross toolchain. The present guide describes best practices of building and

using a cross GNU toolchain1 to prepare programs for µMPS2.

Contents

1 Introduction 1

2 Building a Cross Toolchain 2

2.1 Building Binutils . 3

2.2 Building GCC . 3

2.2.1 Prerequisites . 3

2.2.2 Configuration and Building . 4

3 GNU Toolchain MIPS Specifics 4

3.1 MIPS-Specific Compiler Options . 4

3.2 GP-Relative Addressing ∗ . 5

3.3 MIPS Position Independent Code ∗ . 6

4 Linker Scripts 8

5 Program Startup 9

6 The libumps Library 9

A An Example Makefile 9

1 Introduction

The GNU toolchain is the de facto standard and by far the most supported tool-

chain for embedded MIPS systems today, and thus a natural choice for µMPS2. The

GNU toolchain comprises, most importantly, the GNU Compiler Collection (GCC)

1Although this guide covers only the GNU toolchain, it should be mentioned that viable alternatives

to it might exist in the near future. One promising alternative is the LLVM project which, as of release 3.0,

contains an experimental MIPS backend. See http://developer.mips.com/tools/compilers/
for a comprehensive list of MIPS compilers.

Copyright c© 2011 Tomislav Jonjic

This work is published under a Creative Commons Attribution-ShareAlike 3.0 License

http://creativecommons.org/licenses/by-sa/3.0/

http://developer.mips.com/tools/compilers/
http://creativecommons.org/licenses/by-sa/3.0/

and the GNU Binutils suite of “binary tools” (assembler, linker, and several other

utilities).

As of this writing, there are essentially two variations of the GNU toolchain for

MIPS targets in widespread use:

• toolchains for bare-metal MIPS targets, which are suited for building stan-

dalone programs that do not depend on an existing operating system or other

run-time support;

• toolchains configured for Linux-based targets, suitable for building user space

programs for MIPS systems running GNU/Linux.

Despite the various differences between these two types of toolchains, both can be

used to build programs for µMPS2 with some precaution. This guide will only de-

scribe how to build a bare-metal toolchain, since those are inherently better suited

for our purposes then the other type. Usage description covers both types, however.

Document Structure

Section 2 describes how to build a cross GNU toolchain suitable for µMPS2. The

remaining sections cover the most important MIPS-specific aspects of the toolchain

and parts of µMPS2 that relate in some way to the toolchain. Sections that cover

advanced material are marked with an asterisk (∗) and can be safely skipped on first

reading.

The reader who is eager to get quickly up and running can, after having built or

otherwise obtained a functional cross toolchain, proceed to the example given in

Appendix A which shows how to build a µMPS .core executable.

2 Building a Cross Toolchain

This section presents instructions for building a bare-metal MIPS cross toolchain.

These instructions have been tested on GNU/Linux systems; it is hoped, however,

that they will also be useful for other Unix-like environments. Similarly, release 2.21

of Binutils2 and 4.6.0 of GCC3 have been tested most extensively by the author with

the procedure described below, but it is expected that any other recent releases will

work as well.

The instructions are presented as a series of shell commands which the user can

opt to collect into a shell script for convenience. First, we need to define some envi-

ronment variables which will be referred to later on:

$ export XT_PREFIX=$HOME/umpsxt

$ export XT_TARGET=mipsel -elf

$ export PATH=$XT_PREFIX/bin:$PATH

The XT_TARGET variable holds the name of target we are configuring for. If your

target machine is big endian, replace mipsel-elf with mips-elf.

The XT_PREFIX variable specifies the top-level installation directory the tool-

chain components are going to be installed under. While this would typically be

/usr/local for most GNU packages installed from source, we chose nevertheless

2http://www.gnu.org/software/binutils/
3http://gcc.gnu.org/

2

http://www.gnu.org/software/binutils/
http://gcc.gnu.org/

to install everything under a separate subtree (in this case, of the user’s home direc-

tory). This structure allows easy management of multiple versions of the toolchain:

simply install each toolchain under a separate prefix and remove that prefix when no

longer needed. This is especially true of GCC, which does not support an “uninstall”

Make target at this time.

We follow the practice of using a separate build tree from the source tree.

2.1 Building Binutils

Configure, build and install Binutils as follows:

$ mkdir binutils -bld

$ cd binutils -bld

$../ binutils -2.21/ configure --prefix=$XT_PREFIX \

--target=$XT_TARGET \

--disable -nls

$ make

$ make install

The --prefix option specifies the top-level installation directory; this defaults to

/usr/local. Since we are building a cross toolchain, the --target configuration

option must be specified. The --disable-nls option disables native language

support.

2.2 Building GCC

We now proceed to build the cross compiler.4 We will only build the compiler for

the C language, out of the many supported by GCC. Therefore, you only need to

download the gcc-core-VERSION.tar.* distribution.

2.2.1 Prerequisites

Besides the usual prerequisites (e.g. an ISO C90 compiler, a POSIX-compliant shell,

GNU Make) GCC requires the following libraries as of release 4.6.0:

• GNU Multiple-Precision Library (GMP)

http://gmplib.org/

• GNU MPFR Library

http://www.mpfr.org/

• MPC Library

http://www.multiprecision.org/

Use your package management system to install the development packages for the

above libraries, if possible.

4To be precise, we are building what is often called in jargon a “stage 1” cross compiler; that is, a com-

piler for the target platform which can be used to build a C library for the target system and subsequently

a full toolchain with run-time components. In terms defined by the C standard, our stage 1 compiler

is suitable for freestanding environments (such as operating system kernels), as opposed to hosted en-

vironments. See http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf for more

details.

3

http://gmplib.org/
http://www.mpfr.org/
http://www.multiprecision.org/
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

2.2.2 Configuration and Building

Configure, build, and install the cross compiler as follows:

$ mkdir gcc -bld

$ cd gcc -bld

$../gcc -4.6.1/ configure --prefix=$XT_PREFIX \

--target=mipsel -elf \

--enable -languages=c \

--without -headers \

--disable -nls

$ make all -gcc

$ make install -gcc

$ # Build libgcc (optional)

$ make all -target -libgcc

$ make install -target -libgcc

As for Binutils, we specify the target when configuring. --enable-languages=c
selects the subset of GCC frontends we want to build.

The --without-headers option prevents the build of relying on headers from

a target library, which we lack. This option currently only affects GCC supporting

libraries (e.g. libgcc).

The all-gcc and install-gcc Make targets cause only the cross compiler to

be built and installed, but not any support library (e.g. libgcc and any other support

library that has not been disabled).

The last two commands (optional) cause the libgcc run-time library to be built.

This library mostly consists of implementations of integer and floating point arith-

metic operations that are not directly supported by the underlying architecture. A

typical example is support for the ISO C99 long long type; since the MIPS I ISA

does not provide 64-bit integer arithemetic instructions, GCC will generate calls to

software implementations of those.

3 GNU Toolchain MIPS Specifics

This section describes MIPS-specific aspects of GCC and certain characteristics of

the MIPS ABI(s) the programmer needs to be aware of.

3.1 MIPS-Specific Compiler Options

We describe here some common code generation options that are specific to MIPS

targets. Although the GCC manual5 should be considered the authoritative refer-

ence for these, the plethora of options can be daunting at first for programmers new

to the MIPS platform. For this reason, we present a summary of the most important

code generation options from the perspective of µMPS2 users:

-EL
Generate little-endian code (default for little-endian configurations, i.e.

mipsel-*-*).

5http://gcc.gnu.org/onlinedocs/

4

http://gcc.gnu.org/onlinedocs/

-EB
Generate big-endian code (default for big-endian configurations, i.e.

mips-*-*).

-mips1
Generate code for the MIPS I ISA. Depending on the configuration, this may

or not be the default. µMPS2 comprises an extended R2000/R3000 MIPS CPU,

which implements the MIPS I ISA.

-mabi=abi

Specify the ABI dialect. For MIPS I targets, abi can be either 32 or eabi.

-mabi=32, the default for MIPS I targets, is recommended for µMPS2 pro-

grams.

-mabicalls, -mno-abicalls
Emit (do not emit) position independent code (PIC), as required by shared

libraries or position independent executables (PIEs). See section 3.3 for more

details.

-mabicalls is the default on SVR4-based target configurations (including

GNU/Linux). In such cases, -mno-abicalls along with -fno-pic must be

specified to prevent generation of PIC code.

-mgpopt, -mno-gpopt
Enable (do not enable) the GP-relative addressing scheme optimization. See

Section 3.2 for details.

-G size

Set the maximum size (in bytes) of data objects that can be placed in the “small

data” sections (e.g. .sdata and .sbss), provided that GP-relative addressing

is enabled. A zero value will effectively disable GP-relative addressing alto-

gether, independently of any other option. The default value for -G depends

on the configuration, but it is in practice either eight or zero bytes.

3.2 GP-Relative Addressing ∗
One of the consequences of the MIPS instruction set architecture’s fixed instruction

length (32 bits) for code is that data object accesses are relatively inconvenient, since

a 32-bit address cannot be encoded in a single instruction. Consider, for example,

how a word-sized global variable (foo) is read:

lui $t0, %hi(foo)
lw $t1, %lo(foo)($t0)

The first instruction loads the most significant 16 bits of the address into bits 16-

31 of register t0, while the remaining bits are specified in the “immediate” part of

the lw instruction. It is obvious that this can cause a substantial increase of code

size and performance deterioration in general if the program exhibits a lot of access

patterns similar to the one above.

A solution adopted by MIPS compilers consists of placing “small” data objects

(e.g. word-sized global variables) into special data sections that are allocated a con-

tiguos region of the resulting data segment. Furthermore, a register (by convention

gp) is reserved to point to (the middle of) this region. Thus, as long as the size of the

5

resulting memory region reserved for small data objects is less than 64 KB, these can

be accessed with a single instruction, as illustrated with the following fragment:

lw $t1, %gp_rel(foo)($gp)

The above scheme requires coordination between the compiler and linker, in

addition to some effort from the programmer:

• First, the compiler must be instructed to enable GP-relative addressing via

the -mgpopt nad -G options, which respectively enable the GP-relative ad-

dressing optimization and set the maximum size of data objects for which GP-

relative access is going to be used. The specified size must also be supplied to

the GNU linker (ld) through the -G option.

• The linker must be instructed (using a linker script) to define a symbol that

points to the middle of the above-described small data region; by convention,

that symbol’s name is _gp.

The linker scripts distributed with µMPS2 already provide for this. Addition-

ally, the above pointer (that is, the initial value of the gp register) is also con-

tained in the .aout file header (see [1]).

• The gp register must be initialized to point to the middle of the small data

region by the startup code. In standard startup code provided by µMPS2 (see

crt*.S), this is done in the __start routine, before control is transferred to

main().

3.3 MIPS Position Independent Code ∗
A typical application on systems such as GNU/Linux is composed of many indepen-

dently linked units. These independently linked units (i.e. shared libraries or, in ELF

terminology, dynamic shared objects) are combined together at program load time

by the dynamic linker to create the process image and can even be loaded at run

time to augment the process image.

Since different programs generally result in different address spaces, shared li-

braries cannot have fixed load (virtual) addresses; instead, the dynamic linker loads

each object in such a way that it avoids conflicts with existing segments that com-

prise the process image. Furthermore, physical pages of memory that host the code

and read-only data segments belonging to the shared library are shared between

processes, making it is impossible to perform any address space dependent reloca-

tions on the code itself. Together, this imposes a very strict requirement on shared

library code: it must be position independent — that is, it must be independent of

the virtual address the library is mapped at.

The essential characteristic of position independent code6 (PIC) is the absence

of hardcoded absolute addresses in instructions. Instead of relying on absolute ad-

dresses, the compiler generates instruction sequences that are used to compute the

required address at run time.

A crucial aid in address calculation is a data structure called the global offset

table (GOT). Each unit comprising the process image has as separate GOT; each GOT

6The reader should not confuse this generally adopted meaning of the term “position independent

code” with relocatable code — code suitable for linking with other object code in order to create an exe-

cutable or shared library.

6

entry contains a pointer to a global data object or procedure entry point referenced

by that unit. Since the GOT is part of the data segment, it can be safely modified

by the dynamic linker to reflect the correct function or data symbol addresses (i.e.

relative to the program’s address space).

The calling convention mandates that, when using position independent code,

the callee is given its address in the t9 register. This makes it straightforward to

compute the location of the GOT, since the offset of the callee’s entry point from

the GOT is known at link time. This computation is typically done in the function’s

prologue, and the GOT address is cached in register gp.

As a way of example, contrast the function-call code sequences for non-PIC and

PIC code (details of the calling convention that do not differ between the two modes

— notably argument structure setup — are not shown). The non-PIC version is a

lone instruction:

jal <address>

The position independent equivalent of the above is:

lw $t9, <symbol entry>($gp)
nop
jalr $t9

In the above sequence, the address of the called function is first retrieved from the

corresponding GOT entry into register t9, which is then used as the target in the

jump to register instruction. (The instruction in-between is the load delay slot.) An

analogous scheme is used for references to data objects.

It is clear that, due to indirect addressing, position independent code incurs a

non-negligible overhead. On systems that support shared libraries, this overhead

is justified by their benefits, of course. For programs that cannot (or do not) gain

advantage from position independent code — the most obvious example being op-

erating system kernels — this overhead would be gratuitous. Perhaps even more im-

portantly from the point of view of µMPS2 users, position independent code is both

less readable (to the extent machine code can be) and more difficult to interpret by

code inspection tools (such as the built-in debugger in the µMPS2 emulator).

As can be inferred from the above, shared libraries — as found on modern ELF-

based systems — require considerable support from the operating system; for this

reason alone, they will almost certainly be out of reach for typical µMPS projects.

Furthermore, we note that the µMPS2 .aout format, like the original variants a.out

format, does not adequately support shared libraries.7 The a.out format, while very

simple to understand, is inherently inflexible and non-extensible, as it does not sup-

port arbitrary code, data, or metadata sections. It is thus outright difficult, if not

impossible, to include the necessary shared library-related metadata in a structured

manner.

For further information on the topics discussed above, interested reasers can

consult a variety of resources. The MIPS specifics of the System V ABI, on which the

Linux MIPS ABI is based, are defined in [2]. A much more readable introduction is

given in [3]. [4] is a comprehensive reference on the topic of object formats, linking,

and loading.

7The inability of a.out and its early successors (such as COFF) to efficiently support dynamic linking

was one of the primary motivations behind the transition to the ELF format on GNU/Linux and BSD-

based systems. These early object formats also proved to be inadequate for environments of more com-

plex languages, such as C++.

7

4 Linker Scripts

A linker script describes how sections from one or more input object files should be

merged to create an output object file. Among other things, a linker script defines

the memory layout of the resulting object file, which in our case will always be an

ELF executable file. The linker script command language accepted by GNU ld is

described in its manual.8

The GNU toolchain does not directly support the µMPS2 .aout and .core ob-

ject formats, of course. Instead, ELF executables must be converted to one of the

µMPS2 object formats using the umps2-elf2umps utility. Multiple linker scripts

are supplied with µMPS2, each one being suitable for a specific µMPS2 target object

format. When an .aout/.core linker script is used, the desired memory layout of the

.aout/.core file is reflected in the linked ELF file, and thus the latter can be converted

to the former in a relatively straightforward manner by umps2-elf2umps.

The following linker scripts are supplied with µMPS2:

• umpsaout.ldscript
As indicated by its name, this script should be used for ELF executables aimed

to be converted into the .aout format.

• elf32btsmip.h.umpsaout.x
elf32ltsmip.h.umpsaout.x
These scripts, for big-endian and little-endian targets respectively, are pro-

vided for backward compatibility with previous releases of µMPS. They are

suitable for .aout object files. Note, however, that they are considered depre-

cated and may be removed in a future release.

• umpscore.ldscript
This script should be used for ELF executables aimed to be converted into the

.core variant of the .aout format.

• elf32btsmip.h.umpscore.x
elf32ltsmip.h.umpscore.x
These scripts, for big-endian and little-endian targets respectively, are pro-

vided for backward compatibility with previous releases of µMPS. They are

suitable for .core object files. Note, however, that they are considered depre-

cated and may be removed in a future release.

All of the above scripts are installed in<prefix>/share/umps2, where<prefix> de-

notes the top-level installation directory under which µMPS2 was installed. Users

whose requirements are not met by the standard linker scripts are advised to mod-

ify one of umpsaout.ldscript or umpscore.ldscript, according to suitability.

The umpsaout.ldscript and umpscore.ldscript scripts are suitable for both

little-endian and big-endian targets.

A linker script is specified to the linker using the -T option.

All scripts supplied with µMPS2 specify the address of the __start symbol as

the program entry point. See Section 5 for information about program startup.

8http://sourceware.org/binutils/docs-2.21/ld/index.html

8

http://sourceware.org/binutils/docs-2.21/ld/index.html

5 Program Startup

Before control can be passed to compiled C code (e.g. the main() entry point), it

is necessary to properly initialize its environment; this is the task of the “runtime

support” modules provided with µMPS2. On MIPS systems, this usually includes

initialization of the gp register if GP-relative addressing is used or if the code is po-

sition independent.

The following startup modules, installed in <prefix>/share/umps2, are pro-

vided with µMPS2:

• crtso.S: This module contains startup code suitable for .core object files (i.e.

the OS kernel).

• crti.S: This module contains startup code suitable for .aout object files (i.e.

user mode programs).

For an example on how to integrate this modules in your programs, see Appendix A.

For backward compatibility with previous releases of µMPS, the startup mod-

ules are also provided in pre-assembled form, as position independent relocatable

ELF files (crtso.o and crti.o) that use the GNU/Linux ABI9. These are installed in

<prefix>/lib/umps2. Note, however, that they are deprecated and are not rec-

ommended for use by new programs.

6 The libumps Library

The libumps library provides ROM service stubs, convenient access to processor

control registers, and wrapper function for some µMPS2-specific processor instruc-

tions (i.e. extensions of the MIPS I instruction set). See [1] for a complete description

of this facility.

Like the startup modules, the library is provided in both source (libumps.S)

and binary (libumps.o) forms, but please note that the former is the preferred way

to include libumps in your projects.

A An Example Makefile

In this section we present a simple but complete Makefile for aµMPS2 kernel project,

which the reader can use as a starting point for more elaborate Makefiles. Note that

part of the syntax is specific to GNU Make.

For the sake of this example, assume the project consists of two C modules,

main.c and util.c, and that we want to link the libumps library and the standard

startup module with our kernel.

1 # Cross toolchain variables

2 XT_PRG_PREFIX = mipsel -elf -

3 CC = $(XT_PRG_PREFIX)gcc

4 LD = $(XT_PRG_PREFIX)ld

5

6 # uMPS2 -related paths

9The precise names of the target format used by the GNU/Linux MIPS ABI are elf32-tradbigmips and

elf32-tradlittlemips for big- and little-endian targets, respectively.

9

7 UMPS2_DIR_PREFIX = /usr/local

8 UMPS2_DATA_DIR = $(UMPS2_DIR_PREFIX)/share/umps2

9 UMPS2_INCLUDE_DIR = $(UMPS2_DIR_PREFIX)/ include/umps2

10

11 # Compiler options

12 CFLAGS_LANG = -ffreestanding -ansi

13 CFLAGS_MIPS = -mips1 -mabi =32 -mno -gpopt -G 0 \

14 -mno -abicalls -fno -pic

15 CFLAGS = $(CFLAGS_LANG) $(CFLAGS_MIPS) \

16 -I$(UMPS2_INCLUDE_DIR) -Wall -O0

17

18 # Linker options

19 LDFLAGS = -G 0 -nostdlib \

20 -T $(UMPS2_DATA_DIR)/ umpscore.ldscript

21

22 # Add the location of crt*.S to the search path

23 VPATH = $(UMPS2_DATA_DIR)

24

25 .PHONY : all clean

26

27 all : kernel.core.umps

28

29 kernel.core.umps : kernel

30 umps2 -elf2umps -k $<

31

32 kernel : main.o util.o crtso.o libumps.o

33 $(LD) -o $@ $^ $(LDFLAGS)

34

35 clean :

36 -rm -f *.o kernel kernel .*. umps

37

38 # Pattern rule for assembly modules

39 %.o : %.S

40 $(CC) $(CFLAGS) -c -o $@ $<

On lines 1-9 we set toolchain and µMPS2-releated parameters. The CC and LD pre-

defined Make variables, used in implicit rules, are modified to match the corre-

sponding program names of our MIPS toolchain.

On lines 11-16 we define compiler options. With the MIPS-specific options we

specify, among other things, that position include code should not be generated and

that GP-relative addressing should not be used. Apart from those, the only other

option that may not be immediately obvious is -ffreestanding, which specifies

that the program we are building is targeted at a freestanding execution environment.

(A freestanding execution environment, as opposed to a hosted environment, is one

in which only a small subset of the standard library headers need to be provided10,

and in which program startup and termination is implementation-defined.)

Linker option are specified in the LDFLAGS variable. Since the end goal is a ker-

nel image in the .core format, the umpscore.ldscript linker script is used, as

specified via the -T option. The -G option is the linker counterpart to the com-

piler’s -G option (see Section 3.1). The -nostdlib linker option prevents the linker

10The <stdarg.h> header is, notably, one of the standard headers guaranteed to be present even in a

freestanding compilation environment by any conforming implementation of the standard.

10

from using any default library search path.

The assignment to the VPATH variable on line 23 has the effect of adding the

location of the standard startup module source files to the prerequisite search path

list.

A custom pattern rule is included (lines 39-40) for assembly modules (in this

example, crtso.S and libumps.S). The assembler is invoked via the gcc driver

program for convenience, since assembly source files need to be preprocessed.

The remainder of the Makefile consists of straightforward rule definitions.

References

[1] Michael Goldweber and Renzo Davoli. µMPS2 Principles of Operation, 2011.

[2] System V Application Binary Interface: MIPS Processor Supplement, 3rd Edition.

[3] Dominic Sweetman. See MIPS Run, 2nd edition. Morgan Kaufmann Publishers

Inc., 2006.

[4] John R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers Inc., 1999.

11

	Introduction
	Building a Cross Toolchain
	Building Binutils
	Building GCC
	Prerequisites
	Configuration and Building

	GNU Toolchain MIPS Specifics
	MIPS-Specific Compiler Options
	GP-Relative Addressing
	MIPS Position Independent Code

	Linker Scripts
	Program Startup
	The libumps Library
	An Example Makefile

